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Finite time singularities in a class of hydrodynamic models
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Models of inviscid incompressible fluid are considered, with the kinetic en@mgy the Lagrangian func-
tional) taking the formZ~ [k|v,|2dk in 3D Fourier representation, wheeeis a constant, & a<<1. Unlike
the casex=0 (the usual Eulerian hydrodynamj¢s finite value ofa results in a finite energy for a singular,
frozen-in vortex filament. This property allows us to study the dynamics of such filaments without the neces-
sity of a regularization procedure for short length scales. The linear analysis of small symmetrical deviations
from a stationary solution is performed for a pair of antiparallel vortex filaments and an analog of the Crow
instability is found at small wave numbers. A local approximate Hamiltonian is obtained for the nonlinear
long-scale dynamics of this system. Self-similar solutions of the corresponding equations are found analyti-
cally. They describe the formation of a finite time singularity, with all length scales decreasingtlike (
—1)¥=9) wheret* is the singularity time.
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I. INTRODUCTION vature of frozen-in vortex lines is in some sense a more
fundamental characteristics of hydrodynamic singularity than
The question of the possibility for the spontaneous formainfinite value of the vorticity maximum. To illustrate this
tion of a finite time singularity in solutions of the Euler equa- statement, we consider a class of models of an incompress-
tion for an ideal incompressible fluid has been discussed fole inviscid fluid, different from Eulerian hydrodynamics,
a long time. At present, this fundamental problem of fluidsuch that finite energy solutions with infinitely thin frozen-in
dynamics is still far from a complete solution, though somevortex filaments of finite strengths are possible. Thus, we
rigorous analytical results have been obtained. So, it hageal with a situation when the vorticity maximum is infinite
been found by Beale, Kato, and MajfH], that no singular- from the very beginning, but nevertheless, this fact itself
ity occurs if the time integral of the maximum of the vortic- does not imply a singular behavior in the dynamics of vortex
ity magnitude is finite. Another resu(Constantin and co- strings, while their shape is smooth and the distance between
workers[2,3]) postulate that a blowup of the vorticity, if them is finite. However, the interaction between filaments
does take place, must be accompanied by a singularity in th@ay result in the formation of a finite time singularity for the
field of the vorticity direction. In general, the nature of the curvature of vortex strings. It is the main purpose of the
presumed singularity has not yet been clarified, althougtpPresent work to study this phenomenon analytically.
many theoretical scenarios for blow up have been suggested It is @ well known fact that the absence of solutions with
until now, and also extensive numerical simulations havesingular vortex filaments in Eulerian hydrodynamics is mani-
been performed to observe the singular behatgee[4—13  fested, in particular, as a logarithmic divergency of the cor-
and references therginin particular, the locally self-similar responding formal expression for the energy functional of an
regime of singularity formation seems very probable. Forinfinitely thin vortex filament having a finite circulatioh
this regime, a region of finite size may be distinguished inand a shap&(¢) (this is actually the Hamiltonian functional
flow, where all length scales, corresponding to vorticity dis-determining entirely the dynamics of the system, as is shown
tribution, decrease 1I/i£<ett —t)*2 the velocity increases ac- in Sec. I,
. e ) -
cording to ¢*—t) 4 and the maximum of the vorticity 2 § %(R'(&)'R'(&))dgldgz

behaves liket* —t) 1. It is necessary to emphasize that this  H'{R(&)}= a R(Z)-R(&)|
1) 2

is the only possible scaling, which is compatible both with e
the dimensional structure of the Euler equation and with the
freezing-in property of the vorticity. In this process, an ac-More important is that the self-induced velocity of a curved
celerated straining of vortex lines takes place, and it is thetring in Eulerian hydrodynamics is also infinite. This is the
reason for amplification of the vorticity magnitude. It is very reason why we cannot work in the framework of Eulerian
important that the curvature of vortex lines in the assumedydrodynamics with such one-dimensional objects that are
self-similar solutions should tend to infinity in the vicinity of very attractive for theoretical treatment. The situation be-
the singular point, in accordance with the result of Constaneomes more favorable when we consider a class of regular-
tin and co-worker$2,3]. Thus, the problem of singularity in ized models, with the divergency of the energy functional
the curvature of vortex lines and the problem of singularityeliminated. It should be stressed here that in regularized sys-
in their local stretching are closely connected. tems the usual relatio® = curlv between the vorticity and
In this paper we take the point of view that infinite cur- velocity fields is no more valid, and in this caBds not the
circulation of the velocity around the filament, but it is the
circulation of the canonical momentum figlsee Sec. Il for
*Electronic address: ruban@itp.ac.ru more details However, dynamical properties of a desingu-

1063-651X/2001/6&%)/0563069)/$20.00 63 056306-1 ©2001 The American Physical Society



V. P. RUBAN, D. |. PODOLSKY, AND J. J. RASMUSSEN PHYSICAL REVIEW &3 056306

larized system depend on the manner of regularization. Fdi. HAMILTONIAN DYNAMICS OF VORTEX FILAMENTS
instance, it is possible to replace the singular Green'’s func-
tion G(|R;—Ry|) in Eq. (1) [where G(r)~1/r] by some

analytical function which has no singular points near the re

axis in the complex plane[for example, by G4(r) . . d . -
—tanh@n)/r or by G.(r)~1/ g ]. In that case we may ;escailluldz, starting from the Lagrangian formalisfi9

not expect any finite' time singularity formation becagse the Let a Lagrangian functional{v} specify the dynamics of
corresponding velocity field created by the vortex string aPsome incompressible medium of unit density, with the sole-

pears to be too smooth with any shape of the curve, and thIﬁoidal velocity fieldv(r,t). We are especially interested here

fac;t prevents drawing together some piepes of_the strinqh systems with quadratic Lagrangians, which in three-
With such a very smooth velocity field, a singularity forma- dimensional3D) Fourier representation take the form
tion needs an infinite time.

In this paper we consider another type of regularization of 1
the Hamiltonian functional, when the Green'’s function is still Lafvi= EJ
singular, but this singularity is integrable in the contour in-
tegral analogous to the expressidn,

To clarify the meaning of the suggested mod@lsand to
anpIain the employed theoretical method, we recall some
general properties of frozen-in vorticity dynamics in a per-

( 277)3M<k)|vk|2, €)

whereM (k) is some given positive function of the absolute
, , value of the wave vectok. This expression should be un-
(R'(£1)-R'(£5))dé, d&; ) derstood as the kinetic energy on the group of volume-
[R(&1)—R(&)|F ¢ ' preserving mappings(a,t), and the velocity fields(x,t) is
defined as the time derivative(a,t) taken at the point
a(x,t). Obviously, all the system&) possess the properties

! ) ‘of homogeneity and isothropy in the space. It is clear that the
Eulerian hydrodynamics. Nevertheless, such models stillg 5| Eylerian hydrodynamics corresponds to the simplest
have many common features with usual hydrodynamics

hich ’ for sinaularity f ion in th caseM (k)=1. Another physically important example con-
which are important for singularity formation in the process o g the homogeneous incompressible electron magnetohy-

of the interaction between vortex filaments: a similar hydro'drodynamics(EMHD) for which M(K)=1+q%k2, with a

dynamic type structure of the Hamiltonian and a power"keconstantq being the screening paramefd7,26. Also the
behavior of the Green’s function, with negative eXpone”t'caseM(k)=1+)\2k2 has been studied wit’h a constant
Therefore we pelleve that 't. is useful to mvesﬂgate thes.‘?/vhich corresponds to the so-called averaged Eulerian hydro-
models, especially the question about the formation of a f"dynamics(see for instance, the papde¥,28 for more de-
nite time singularity in thg vortex line curvature. We hoPetaiIs). In the géneral case, try1e syste(ﬁ};m,ay be understood
the results 9f our sFudy will shed more light on the problemas models for some inviscid non-Newtonian fluids. It should
of ﬁ)_lr?_w up In Eulerlan _hy((jjrody;lalt;”rms. In's " briefl be noted that there exists a direct relation between such mod-
1 NIS paper 1S organized as Tollows. In Sec. 11 We DNetly o5 54 the vortex blob method introduced by Chorin for the
review some b_asw_p_ropertles of f“’zer!"_”_ vorticity dynarT?'C‘Q’desingularization of the Eulerian hydrodynamii28]. Some
na perfect fluid, giving necessary definitions for theoret'ca!discussion of this relation, for the case of the averaged Eu-
conceptions used in our study. In general, our approach i®rian hydrodynamics, can be found in papk88] and[31].
based on the Hamiltonian formalism for frozen-in vortex Due to the presence of the Noether-type symmetry with
I|nes[14—1j_. Then, in S?C' lil, we perfprm the linear analy- respect to the relabeling of Lagrangian labels of fluid points
sis of stability for a pair of symmetric antiparallel vortex [21-25,14—1§ all such systems have an infinite number of

filaments and find an instability at small wave numbersiy.eqrais of motion, which can be expressed as conservation
analogous to the C_:row mstab!llf)lg]. In Sec. IV we postu- of the circulationsI'. of the canonical momentum field
late a local approximate Hamiltonian for the long scale non—p(r )

linear dynamics of the pair of filaments and present analyti- = "’
cal self-similar solutions of the corresponding equations. oL

Those solutions describe the finite time singularity forma- P=%5v (4)
tion, with the length scales decreasing like {t)Y(>~ ),

and this is the main result of the present work. In Sec. V wedlong any closed contour(t) advected by flow, thus the
make some concluding remarks about vortex filaments of generalized theorem of Kelvin is valid,

finite width, about long scale approximations for systems

with the Green’s function of a general form, and finally r.= fﬁ (p-dl)=const. (5)
about how it is possible to improve the approximation in the c(t)

case of smalkr, when the unstable region is narrow in wave- These integrals of motion correspond to the frozen-in prop-
n_umbe_r space. In Append|>_< A we write some mte_gral expres-er,[y of the canonical vorticity field(r 1),
sions, in terms of the special mathematical functions, needed
for the calculation of the instability increment of the vortex

FZ
HE{R<§>}~7§§

with a small but finite positive constantOa<<1. If « is not
small, we actually have models that are rather different fro

pair. In Appendix B we provide details about the integration Q=curlp=curl . (6)
procedure for the system of ordinary differential equations
related to the self-similar solutions. After defining the Hamiltonian function&{Q},
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a2

the equation of motion for the vorticity takes the form

& (12

IR
, (7) Q(r,t)szdZV fﬁ 6(r—R(v,§,t))a—§d

v=v{Q}

where a two-dimensiona(2D) Lagrangian coordinater
®) =(v1,v,), Which lies in some manifoldV; is the label of a
vortex line, while the longitudinal coordinatedetermines a
point on the line.
This equation describes the transport of frozen-in vorteX The important characteristics of the system: thietual)

Q,=curl X Q.

il oH
curll =5

lines by the flow having the velocity field linear momentunP and the angular momentuM can be
SH expressed as follows:
v= curl( 50) C)
1
It is very important in this process that all topological char- P= deZVQ § [RXR,]dE, 13

acteristics of the vorticity field are conservgtd,32,33. It
follows from Egs.(3), (6), and(7) that the Hamiltoniar#,,

corresponding to the Lagrangialy, is f 1
M= dzv—jg[Rx[RxR]]dg. (14)
dk | ? 1JJG ( ) N 3 ¢
== ry—r
2m)3 KM(k) 2 ML e
X (Q(rq) - Q(ry)drdr,, (10

In the limit when the shapeR(v,&,t) of vortex lines do
not depend on the label, we have one singular vortex fila-

with the Green’s functiorGy,(r) being equal to the follow- ) . . ; .
u(n) LA ment with a finite circulationl’ = [ -d?». In this case the

ing integral: i o )
. flow is potential in the space around the filamem: VO,
dk ek 1 (+=sinkr dk with a multivalued scalar potentiab(r,t). The potential
Gu(r)= 27 MK “52)0 ki M) flow domain is passive from the dynamical viewpoint, be-

(11) cause there the flow depends entirely on the filament shape.
The dynamics of the shage(&,t) of such an infinitely thin
The frozen-in vorticity field can be represented in topo-vortex filament is determined in a self- conS|stent manner by
logically simple cases as a continuous distribution of vortexthe variational principle with the Lagrang|a£1 {R} [14-
lines[14-17, 17],

FZ
1§ (R'XRI-DRNAE 5§ Gu((R(E) - RIEIN®R (£ R'(£) dedé, s

where the vector functio®(R) must have unit divergence venient to use parametrization of the vortex line shape by the
[17] Cartesian coordinate,

dive, D(R) =1, 16 R(ED=(X(£D,Y(£,9). (18

Then the choiced=(0,Y,0) gives immediately thaX(¢,t)
The generalization of the expressidrd) to a case of several andY(&,t) are canonically conjugated quantities.

filaments with the circulation§™ and shape®R(M(¢,t), n Hereafter, we will consider vortex filaments with unit cir-

=1,... N, is straightforward: one should write a single sum culation for simplicity. So the symbal’, if appearing in

over n for the first term and a double sum for the Hamil- Some expressions below, will mean the special mathematical

tonian. Gamma function. Also, without loss of generality, all quan-

It is easy to see that the Hamiltoni&®) corresponds to lities may be considered as dimensionless.
the functionM (k) in the form Now, for some fixed value of the parameter let us
consider the symmetrical dynamics of a pair of oppositely

M (k) ~k®. (17)  rotating vortex filaments, with the symmetry plane

=const. Due to this symmetry, it is sufficient to consider

The choice of the longitudinal paramet@is not unique, only one of the filaments. It follows from the above discus-

but this does not affect the dynamics of the vortex stringsion that the exact expression for the Hamiltonian of this
which is an invariant geometric object. Sometimes it is con-system is the following:
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L L f f (1+XX3+ Y1 Y5)dé, dE, L1 f f (—1-X{X+YiY5)dé; de,
—£)2H (X1 = X) 2+ (Y1 Yp)2 |2 - 2 — €)% (X3 = X2) 2+ (Y1 + Yo+ b)? |- )2’
(19
whereb is the mean distance between the two filamébtsloes not depend on time because of the conservation law for the

momentum(13)], X;=X(&;), X;=X'(&;), and so on. The first term in E€L9) describes the nonlocal self-interaction of the

filament, while the second one corresponds to the interaction with the second filament. The Hamiltonian equations of motion
have the form

Ma Y(§)=— (20)
(5)_5\((5) (&)= X(E)

IIl. CROW INSTABILITY FOR A PAIR OF VORTEX FILAMENTS

The system with the Hamiltoniaf19) possesses the exact stationary solution
X(€,1)=C(a,b)t, Y(&1)=0, (21)

which describes the uniform motion of straight filaments. Here the stationary ve@®(ityb) is proportional tdb® 1. But this
solution appears to be unstable due to an analog of the Crow instdlifityln this section we consider the linear evolution
of small perturbations of the stationary solution, and derive the linear growth rate.

To perform the linear analysis of small deviations of the vortex shape from a straight line, we need the quadratic part of the
Hamiltonian(19),

1 (X1 X5+ Y1Y3) a—1\[(X;—X2)2+(Y1—Y,)?]
HP == dé déy+ ( ) dé, dé
sz |&— &t ? ff |- &% L

(Y3¥z~XiX3) (a 1) [(X1—Xo) 2+ (Y35 Y5)?]
o e tate 5| [ e e o e

1 a—1\/a—3 2b2(Y1—|—Y2)2
_Eff( 2 )( 2 )[(gl—g2)2+b2](5—a)/2d§1d§2' (22)

For further consideration, it is useful to rewrite it in the one-dimensiéb@) Fourier representation,

H(z)zf %[A (K) XXkt BL(K)YY ] 3
a T | 2R KIAAR KT BalK) Vil — ]

Expressions for the functions,(k) andB,(k) follow from Eg. (22). So,A,(k) can be represented as follows:
1
g«l—a - (§2+ 1)(1—&)/2

1
B N (£2+1)B3- )12

Aa(k):2k2b“f+mcoskb§)( )dg+2(a—1)b“2Fm[1—cos(kbg)]< d¢z
0 0

g [T 1 3—«a 1
=2(1—a)°b fo [1—cogkb?)] gS*a_(§2+l)(3*a)/2+ 1=a)(f241)5 " d¢. (24)

Obviously,A (k) is positive everywhere. Analogous calculations for the funcBg(k) give

+oo 1 1 [t d¢
Ba(k)=2k2b“J’ cos(kbg) —|d¢+2(a—1)b 2J [1—cogkb?)]—
0 a (§2+1)T 0 ér3 a

+2(1—a)b'12f+w[1+cos(kb§)]( > 13_ e 20—553_ /2)d§
0 (P+1)E a2 (241)679

=2(1—a)2b“_2f+x (3—a)b“‘2J+m[1+cos(kb§)]
0 0

2 1
X (§2+ 1)(5*01)/2 B (§2+ 1)(3a)/2> dZ. (25
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FIG. 1. The dependencesi(k)=Aa(k)Ba(k) with b=1 for FIG. 2. The boundary of instabilityio( ).

a=0.01, 0.025, 0.05, 0.1, 0.25, 0.5. Lines corresponding to the

given values ofa intersect the horizontal axis in the indicated or-
der. do(@)~2Va, a<Ll. (3

In Appendix A, A, (k) andB,(k) are expressed through the The plot ofqe(«) is shown in Fig. 2. The instability incre-
Euler Gamma functiod’(x) and the modified Bessel func- menty, (k)= —A,(k)B,(k) is proportional to the absolute

tions of the second kin&,(x). value ofk at very small values okb,
The dispersion relation between the frequengy of a
small amplitude perturbation of the filament shape and the y(K)=(1—a)l5_2|k|b* 1(1—a)/a. (32

corresponding wave numbkis simply given by the formula
However, for eachr there exists a maximum valug,,{ «)

2 —
0 (K)=Au(K)B4(k), (26)  of the increment, which is attained kb~ \/or. Therefore the
imat i 9 d (32 lid only if
since the linearized equations of motion #¢f andY, are ﬁﬁg:f}ga e expression9) and (32) are valid only i

For large wave numbersk|b>1, the functionsA (k)
andB, (k) are both positive. The asymptotic approximations
in that region are

X=Bu(K) Yy, Yi=—Au KXy, (27)

as follows from Eq(20). In Fig. 1 we have plotteebi versus
k for several values of.

It is easy to see that at small wave numbers the product Aa(k)wBa(k)wZ(l—a)ZkZ*QJM mdn
A.(k)B,(k) is negative. Indeed, after some calculations we 0 7
2 : =
obtain in leading order fokb<<1, . 2(1— a)cog mal2)T(a)
=Kk« . (33
l-«a 2—«a
Aa(k)mkzb‘Y( " )|3a, (28)
Note that this expression does not contain the paranteter
B, (K)~—4(1—a)?b 2l (290  Forasingle vortex filament it is actually the exact expression

¢ “ for A, (k) andB,(k), which is valid in the whole range &

where the constarl_, is given by the integral A general nonlinear analysis of the nonlocal systdr9)

is difficult. Therefore we need some simplified model which

a would approximate the nonlinear dynamics, at least in the
o d¢ \/;F( 1- E) most interesting long scale unstable regime. In the next sec-
37a:f = , (30  tion we suggest such an approximate model and find a class
0 ({P+1)B 21“(3_—6() of solutions describing the formation of a finite time singu-
2 larity.

with T'(- - -) being the Gamma function. Therefore, an insta-

bility takes place at smalk. The unstable domain in the IV. SINGULARITY IN LONG-SCALE NONLINEAR

DYNAMICS
wave-number space corresponds to a rafige<qg(«),
whereB (k) is negative, with the function(«) behaving, We note that the same long-scale limit as in E88) and
at small values ofy, like \a (29) can be obtained from the local nonlinear Hamiltonian
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(2Y)“ wherez=(£— &%) (t* —t) 4.

VX'2+2'2d¢E, (39) However, with this choice of parametrization of the curve,
the obviously existing symmetry of the syste{®4) with

where the coordinat¥ (&) is measured from the symmetry fespect to rotation in the-z plane is hidden. For taking

plane. This Hamiltonian approximates the exact nonlocafidvantage of this symmetry, cylindrical coordinates are more

Hamiltonian of a symmetrical pair of vortex filaments in the appropriate, with the angle coordinateserving as the lon-

case when the ratio of a typical value ¥fto a typical lon-  gitudinal parameter,

gitudinal scalel is much smaller thangy(«) (X.Y.Z)=[R(¢.1)c0se.Y(o.1).~R(@.0)sine]. (43)

HIR(O}=(1-a)l5_, 3&

¢4

Y/L<\/E' (39 Instead of the equations of motid86) and (37), we obtain
In particular, this means that the slope of the curve withth® equivalent systerfwhere a same time rescaling as in
respect to the symmetry plane should be small, and ¥lso Eds-(36) and(37) is performed

should be small in comparison with the radius of the line JREFR?
curvature. WhenY = const, X' =const, Z' =const, expres- _(o_ R— R+R
. : ; : : (2= )RR ) (44)
sion (34) gives the same result for uniform stationary motion yl-a
as the exact Hamiltonian.
With the Cartesian parametrizati¢h8), the correspond- _ ver'’ \' 1 RY®
ing approximate local nonlinear equations of motion have —(2-)RY=— | | T = (4D
the form (after appropriate time rescaling @\ JR*+R'?] @ |R*+R'
1 A+ X2 Here (---)'=d,(---). This system follows from the La-
X= (36 grangian written in cylindrical coordinates
(2—a) yi-a
RE. Y
. 1 Yex! ! ,C‘p"‘ (Z—a)?Y— ;\/R +R d(,D (46)
Y= 3
(2—a)a| 1+X"? 37

The self-similar substitution

and they allow us to obtain a simple explanation of the in-
stability. On a qualitative level of understanding, the reason ~ R(®: ) =(t" —0fr(e), Y(e.)=(t"—t)Py(¢) (47)

for the instability is that if initially some pieces of the curve does not change the meaning of the angle coordipate

were closer to the symmetry plane and convex in the direcI'eads us to the following pair of equations for the functions
tion of motion, then at subsequent moments in time the cur- gp q

vature will be increasing because of smaller value¥ ahd r(¢) andy(e):

corresponding larger velocity, whidwill be decreasing due JrZer2
to the curvature. Thus, the feedback is positive and the sys- r2=——8—, (48)
tem is unstable. In the final stage of the instability develop- yte
ment, a locally self-similar regime in the dynamics is pos-
sible, because the above equations admit the self-similar 1 yer’ 1 ry” (
T r=—| —m—| ——. 49
substitution yr=-+ N N )
X(E)=X*—(t* —t)Ax[(£— &) (t* —t)"P], (38
(&) ( I8 )7HL 39 We observe that there is no explicit dependencegom
Y(£,1) = (t* —)By[(£— &)(t* =) F] (39) these equations. This property helps us to integrate the sys-

tem. The general solution can be represented in the following
with arbitrary constantX*, £*, t*, and with the exponent parametric formsee Appendix B for a detailed derivatjon

1 ¢(p)=¢otarctarip)

B=5—. (40)
a(l—a) ‘ a(2—a)
After substituting Eqs(38) and(39) into Egs.(36) and(37), 2—a)(1+a) arctan p (1-a?) )’
we obtain a pair of ordinary differential equations for the

functionsx(z) andy(z), (50)

2 1/2(2- a)

dx 1+ (dx/dz)? vl 17

X—Zd_Z: ?’ (41) Y(p) C a(z_a) +p ) (51)

_ 2 (a—1)/2(2—a)
dy 1d y*(dx/dz) ) “2) r(p):C(la)/(Za)(C(iz—_aa))_i_DZ) ’1+p2,

—z—=——| —],

dz adz| 1+ (dx/dz)? (52)
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20 - - - - - - - neous along the filament if a local stretching is not suffi-
ciently fast. This mechanism acts against singularity
formation and, probably, in some cases it can prevent a sin-
gularity at all. (It is worth mentioning here that for finite
width vortex structures in the Navier-Stokes equation frame,
the usual “outcome” result of the Crow instability is vortex
line reconnection[34].) Thus, a more or less consistent
analysis of the general situation should take into account,
besides the dynamics of a mean shape of the filament, at
least the dynamics of the width and the conjugated dynamics
of the twist. Clearly, we do not need to conside#0 sys-
tems, when we deal with nonsingular vortex filaments. It
should be emphasized that an attempt to take account of the
40 3 20 10 o 10 20 30 a0 finite width of the filament by simply using regularized

z Green’s functions such &3,(r) ~ 1/yr?+ €2 with a constant
€, giving correct results for the long scale limit of the linear-
FIG. 3. Self-similar solutiorx(z) for C=50, «=0.1. ized problem, fails to describe the dynamics in the highly
o nonlinear regime.
where the parametep runs between the limits-o«<p< Also, we would like to note that a local approximation

+%, Candg, are arbitrary integration constants . The con-analogous to Eq(34) is possible for arbitrary Green’s func-

stantC determines the asymptotic slope of the curve at larggjon G,,(r). The corresponding long scale Hamiltonian has
distances from the origingy~r/C whenr—o«, while the  the form

constanty, reflects the mentioned symmetry of the system

with respect to rotations ir-z plane. The conditiori35) for ; -

applicability of the local approximatioi34) is satisfied if Hu{R(§)}= ﬂg Fu(Y)VX'“+2"%d¢,

C\a>1. A typical self-similar solutionx(z) is shown in

Fig. 3. where the(positive) function F\,(Y) is related to the func-

It is interesting to note that the total anglep between tion Gy(r) in the following way:
two asymptotic directions in the-z plane does not depend

. . . + oo
on the paramete€ in the long-scale local approximation FM(Y):I [Gu(&)— Gl VE+(2Y)2]Hde.
used above, 0
a(l—a)
1=y 2-a)(lta)) (53 unstable if the second derivative of the functiey) is nega-
tive at that valueFy},(b/2)<0. We believe that such systems

At small values ofe, this angle approaches. Another re-  can exhibit locally self-similar collapse, if the asymptotics of
mark aboutA ¢ is that the above expression assumes identithe functionFy(Y) is powerlike at smally: Fy,~Y®, with

cal values air and at I a, so the valuex=1/2 results in 0<a<1.

the extremum) ¢,,;,= 2/3. For this case, the curve lies on The final remark concerns the possibility of including ef-
the coney=r/C. fects caused by the fact that the unstable range is finite in the

wave-number space into the approximate long scale theory.

This is especially important for the case of small valuea of

because in that limit the conditiof35) for the applicability

We observed that in the systeri®8) with 0<a<1, finite ~ of the Hamiltonian(34) becomes too restrictive. The idea

time singularity formation is possible in the self-similar re- how to improve the approximation is the following. In gen-

gime. Inasmuch as the conditi¢®5) for the applicability of ~ €ral, the exact expression for the Hamiltonian of a pair of

the approximate HamiltoniafB4) is satisfied in a range of singular filaments, after integration by parts, can be repre-

the parametec related to the self-similar solution&0)—  sented as the half of the integral over a surfacelrawn

(52), we conclude that in the systent®) the self-similar between the filamenténe-half since we consider only one

collapse of two symmetrical singular vortex filaments canfrom two symmetric strings

also take place. The principal question is whether this is also

possible for filaments having finite width. If yes, then such M _1f (v-p) dr—Ef (v-ds)
2 2)s 2

A The stationary motion with a constant coordingtg=b/2 is
o=

V. DISCUSSION

solutions are analogous to the assumed self-similar solutions “ 2
of the Euler equation. Though the exponght(40) differs

from 1/2, the difference is small i& is small. However, an because the canonical momentum figidcreated by fila-
important difference exists between infinitely thin flamentsments is determined by a multivalued scalar poterdiél):

and filaments with finite width: inside the latter, longitudinal p=V®, which has the additive incremeht=§(p-dl) after
flows take place, caused by a twist of the vortex lines conpassing around a filament. Also the equality @div0 is im-
stituting the filament. Those flows keep the width homoge-ortant for derivation of the last expression. In the case of
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small @, we should just more carefully take account of the
contribution to the surface integral from the vicinity of fila-
ments. As the result of such consideration, we find that for a

3(3)_f+w cogkb)dZ
o 0 (§2+1)(3—a)/2

better approximation it is sufficient to replace in E&4) the J7 Kb\ 1~ (a/2)
projection of the arc-length element by the entire arc-length = —Tr(_) Ki—(azy(kb),  (AB)
element and, correspondingly, use the Hamiltonian F(3_a) 2
2
HHR(E)}~ fﬁﬁx/x'2+w2+z'2dg (54)
| a 36— f +=_codkbl)dl
0 (§2+ 1)(5701)/2
We stress once more that this expression is valid only in the = 2 (a2
casea<<l, Y/L<1. T kb)<™t«
= ﬂ(f) Ko (aiz(kb). (A7)
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APPENDIX A X[2(3O) +15_ ) —I®—1,__]. (A9)

In order to have some closed expressions for the functions
A, (k) andB,(k) instead of the integral representatid@d)
and (25), let us use the following mathematical relations
[35]:

APPENDIX B

In this appendix we explain how the solutigf®0)—(52)]
of the systen{(48) and(49)] can be obtained. Let us intro-
duce the designations

n—-1—-«
edg Yal\T2 Q=(dr/dg)?, s=r? (81)
o | = (A
" 0 (24 1)nT 2 F(”_O‘) then consider temporary as independent variable, and re-
2 write Eqg.(49) as follows:
2[ d{ y* | yxdQids—1)]
+oo d¢ B Ta -“lo— +
|<1>=f0 cos(kbz)glff(bk) “COS(T)F(a), y a_st Js+Q 2Vs+Q | (82
(A2) or equivalently
oo d¢ (kb)2|(® 2] dy d| yos ||
3)— _ J — — 2 ya—1 =
I fo [1 coikbg)tgw A—a)(2=a) y a_ads Vs+Q as| V5ol | (B3)
(A3)
Substituting into this equation the relation
% —(1/2) _
r cogqf)dl _ \m (g)” K (@, =0, Q=s(sy** -1), (B4)
o (P+1) T(p)\2 P _ _ _
(A4) which follows from Eq.(48), we have the following equation

for y(s):
whereI'(x) is the Gamma function anld,(x) is the modi-

fied Bessel function of the second kind. The integrad)
results in the equalities

—+
J(l):f
0

= cogkby)d;  \m (kb

—al2
(24 1)t (1_a 7) K_42(kb),
I 2
(A5)

2 dy
y=— gelast(1-2a)y* @], (B5)

This first-order differential equation is linear for the inverse

dependencs(y), and its general solution is

(1-2a)
a(2—a)

s(y)=C?y?— 2(a-1) (B6)

056306-8
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whereC is an arbitrary constant of integration. Thus, we have the relation betwaeds=r2. To obtain another relation,

betweeny and ¢, let us use the equation

which gives us the integral

( Czy2(2— a) +

ds

4= 350

(B7)

(1—2a)(1—a)) dy
a2-a) |y

B _f s'(y)dy _f
PR sy Vs(y)yP T 91

(1-a?)

( C2y2(27a)_ (1—2a)) Jc2y2(2 a) _
a(2—a) a(2—a)

1— 2
=arctan\/( cZyZ(Z*a)_ g) _ \/—
a(2—a) (2—a)(1+a)

After introducing the new parameter

a(l—a) a(2—a)
arctan ———C¥?@ra 1, (B8)
(1-a?)

p= \/( Czy2(2a)_(1_a2)>
a(2—a))’

(B9)

we arrive at a solution of the syste#@8) and(49)] in the form (50)—(52).
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