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Finite time singularities in a class of hydrodynamic models

V. P. Ruban,1,2,* D. I. Podolsky,1 and J. J. Rasmussen2

1L.D. Landau Institute for Theoretical Physics, 2 Kosygin Street, 117334 Moscow, Russia
2Optics and Fluid Dynamics Department, OFD-128, Riso” National Laboratory, DK-4000 Roskilde, Denmark

~Received 5 December 2000; published 16 April 2001!

Models of inviscid incompressible fluid are considered, with the kinetic energy~i.e., the Lagrangian func-
tional! taking the formL;*kauvku2dk in 3D Fourier representation, wherea is a constant, 0,a,1. Unlike
the casea50 ~the usual Eulerian hydrodynamics!, a finite value ofa results in a finite energy for a singular,
frozen-in vortex filament. This property allows us to study the dynamics of such filaments without the neces-
sity of a regularization procedure for short length scales. The linear analysis of small symmetrical deviations
from a stationary solution is performed for a pair of antiparallel vortex filaments and an analog of the Crow
instability is found at small wave numbers. A local approximate Hamiltonian is obtained for the nonlinear
long-scale dynamics of this system. Self-similar solutions of the corresponding equations are found analyti-
cally. They describe the formation of a finite time singularity, with all length scales decreasing like (t*
2t)1/(22a), wheret* is the singularity time.
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I. INTRODUCTION

The question of the possibility for the spontaneous form
tion of a finite time singularity in solutions of the Euler equ
tion for an ideal incompressible fluid has been discussed
a long time. At present, this fundamental problem of flu
dynamics is still far from a complete solution, though som
rigorous analytical results have been obtained. So, it
been found by Beale, Kato, and Majda@1#, that no singular-
ity occurs if the time integral of the maximum of the vorti
ity magnitude is finite. Another result~Constantin and co-
workers @2,3#! postulate that a blowup of the vorticity, i
does take place, must be accompanied by a singularity in
field of the vorticity direction. In general, the nature of th
presumed singularity has not yet been clarified, althou
many theoretical scenarios for blow up have been sugge
until now, and also extensive numerical simulations ha
been performed to observe the singular behavior~see@4–13#
and references therein!. In particular, the locally self-similar
regime of singularity formation seems very probable. F
this regime, a region of finite size may be distinguished
flow, where all length scales, corresponding to vorticity d
tribution, decrease like (t* 2t)1/2, the velocity increases ac
cording to (t* 2t)21/2, and the maximum of the vorticity
behaves like (t* 2t)21. It is necessary to emphasize that th
is the only possible scaling, which is compatible both w
the dimensional structure of the Euler equation and with
freezing-in property of the vorticity. In this process, an a
celerated straining of vortex lines takes place, and it is
reason for amplification of the vorticity magnitude. It is ve
important that the curvature of vortex lines in the assum
self-similar solutions should tend to infinity in the vicinity o
the singular point, in accordance with the result of Const
tin and co-workers@2,3#. Thus, the problem of singularity in
the curvature of vortex lines and the problem of singular
in their local stretching are closely connected.

In this paper we take the point of view that infinite cu
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vature of frozen-in vortex lines is in some sense a m
fundamental characteristics of hydrodynamic singularity th
infinite value of the vorticity maximum. To illustrate thi
statement, we consider a class of models of an incompr
ible inviscid fluid, different from Eulerian hydrodynamics
such that finite energy solutions with infinitely thin frozen-
vortex filaments of finite strengths are possible. Thus,
deal with a situation when the vorticity maximum is infini
from the very beginning, but nevertheless, this fact its
does not imply a singular behavior in the dynamics of vor
strings, while their shape is smooth and the distance betw
them is finite. However, the interaction between filame
may result in the formation of a finite time singularity for th
curvature of vortex strings. It is the main purpose of t
present work to study this phenomenon analytically.

It is a well known fact that the absence of solutions w
singular vortex filaments in Eulerian hydrodynamics is ma
fested, in particular, as a logarithmic divergency of the c
responding formal expression for the energy functional of
infinitely thin vortex filament having a finite circulationG
and a shapeR(j) ~this is actually the Hamiltonian functiona
determining entirely the dynamics of the system, as is sho
in Sec. II!,

H G$R~j!%5
G2

8p R R „R8~j1!•R8~j2!…dj1 dj2

uR~j1!2R~j2!u
→`.

~1!

More important is that the self-induced velocity of a curv
string in Eulerian hydrodynamics is also infinite. This is t
reason why we cannot work in the framework of Euleri
hydrodynamics with such one-dimensional objects that
very attractive for theoretical treatment. The situation b
comes more favorable when we consider a class of regu
ized models, with the divergency of the energy function
eliminated. It should be stressed here that in regularized
tems the usual relationV5curlv between the vorticity and
velocity fields is no more valid, and in this caseG is not the
circulation of the velocity around the filament, but it is th
circulation of the canonical momentum field~see Sec. II for
more details!. However, dynamical properties of a desing
©2001 The American Physical Society06-1



F
n

ea

th
ap
th
in
a-

o
til
in

om
st
ic
ss
ro
ike
n
s
fi

pe
m

fly
ic
ca
h
ex
y-
x
r

on
yt
ns
a

w
f

m
lly
he
e-
es
d
x

on
n

me
r-

le-
re
e-

te
-
e-

s
the
lest
-
ohy-

dro-

ld
od-

the

Eu-

ith
nts
of
tion

op-

V. P. RUBAN, D. I. PODOLSKY, AND J. J. RASMUSSEN PHYSICAL REVIEW E63 056306
larized system depend on the manner of regularization.
instance, it is possible to replace the singular Green’s fu
tion G(uR12R2u) in Eq. ~1! @where G(r );1/r ] by some
analytical function which has no singular points near the r
axis in the complex plane@for example, by Gq(r )
;tanh(qr)/r or by Ge(r );1/Ar 21e2]. In that case we may
not expect any finite time singularity formation because
corresponding velocity field created by the vortex string
pears to be too smooth with any shape of the curve, and
fact prevents drawing together some pieces of the str
With such a very smooth velocity field, a singularity form
tion needs an infinite time.

In this paper we consider another type of regularization
the Hamiltonian functional, when the Green’s function is s
singular, but this singularity is integrable in the contour
tegral analogous to the expression~1!,

H a
G$R~j!%;

G2

2 R R „R8~j1!•R8~j2!…dj1 dj2

uR~j1!2R~j2!u12a
, ~2!

with a small but finite positive constant 0,a!1. If a is not
small, we actually have models that are rather different fr
Eulerian hydrodynamics. Nevertheless, such models
have many common features with usual hydrodynam
which are important for singularity formation in the proce
of the interaction between vortex filaments: a similar hyd
dynamic type structure of the Hamiltonian and a powerl
behavior of the Green’s function, with negative expone
Therefore we believe that it is useful to investigate the
models, especially the question about the formation of a
nite time singularity in the vortex line curvature. We ho
the results of our study will shed more light on the proble
of blow up in Eulerian hydrodynamics.

This paper is organized as follows. In Sec. II we brie
review some basic properties of frozen-in vorticity dynam
in a perfect fluid, giving necessary definitions for theoreti
conceptions used in our study. In general, our approac
based on the Hamiltonian formalism for frozen-in vort
lines @14–17#. Then, in Sec. III, we perform the linear anal
sis of stability for a pair of symmetric antiparallel vorte
filaments and find an instability at small wave numbe
analogous to the Crow instability@18#. In Sec. IV we postu-
late a local approximate Hamiltonian for the long scale n
linear dynamics of the pair of filaments and present anal
cal self-similar solutions of the corresponding equatio
Those solutions describe the finite time singularity form
tion, with the length scales decreasing like (t* 2t)1/(22a),
and this is the main result of the present work. In Sec. V
make some concluding remarks about vortex filaments o
finite width, about long scale approximations for syste
with the Green’s function of a general form, and fina
about how it is possible to improve the approximation in t
case of smalla, when the unstable region is narrow in wav
number space. In Appendix A we write some integral expr
sions, in terms of the special mathematical functions, nee
for the calculation of the instability increment of the vorte
pair. In Appendix B we provide details about the integrati
procedure for the system of ordinary differential equatio
related to the self-similar solutions.
05630
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II. HAMILTONIAN DYNAMICS OF VORTEX FILAMENTS

To clarify the meaning of the suggested models~2! and to
explain the employed theoretical method, we recall so
general properties of frozen-in vorticity dynamics in a pe
fect fluid, starting from the Lagrangian formalism@19–
25,14–17#.

Let a Lagrangian functionalL$v% specify the dynamics of
some incompressible medium of unit density, with the so
noidal velocity fieldv(r ,t). We are especially interested he
in systems with quadratic Lagrangians, which in thre
dimensional~3D! Fourier representation take the form

LM$v%5
1

2E dk

~2p!3
M ~k!uvku2, ~3!

whereM (k) is some given positive function of the absolu
value of the wave vectork. This expression should be un
derstood as the kinetic energy on the group of volum
preserving mappingsx(a,t), and the velocity fieldv(x,t) is
defined as the time derivativeẋ(a,t) taken at the point
a(x,t). Obviously, all the systems~3! possess the propertie
of homogeneity and isothropy in the space. It is clear that
usual Eulerian hydrodynamics corresponds to the simp
caseM (k)51. Another physically important example con
cerns the homogeneous incompressible electron magnet
drodynamics~EMHD!, for which M (k)511q2/k2, with a
constantq being the screening parameter@17,26#. Also the
caseM (k)511l2k2 has been studied, with a constantl,
which corresponds to the so-called averaged Eulerian hy
dynamics~see, for instance, the papers@27,28# for more de-
tails!. In the general case, the systems~3! may be understood
as models for some inviscid non-Newtonian fluids. It shou
be noted that there exists a direct relation between such m
els and the vortex blob method introduced by Chorin for
desingularization of the Eulerian hydrodynamics@29#. Some
discussion of this relation, for the case of the averaged
lerian hydrodynamics, can be found in papers@30# and@31#.

Due to the presence of the Noether-type symmetry w
respect to the relabeling of Lagrangian labels of fluid poi
@21–25,14–16#, all such systems have an infinite number
integrals of motion, which can be expressed as conserva
of the circulationsGc of the canonical momentum field
p(r ,t),

p5
dL
dv

, ~4!

along any closed contourc(t) advected by flow, thus the
generalized theorem of Kelvin is valid,

Gc5 R
c(t)

~p•dl!5const. ~5!

These integrals of motion correspond to the frozen-in pr
erty of the canonical vorticity fieldV(r ,t),

V[curl p5curl
dL
dv

. ~6!

After defining the Hamiltonian functionalH$V%,
6-2
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H$V%5UF E S dL
dv

•vDdr2LGU
v5v$V%

, ~7!

the equation of motion for the vorticity takes the form

Vt5curlFcurlS dH
dVD3VG . ~8!

This equation describes the transport of frozen-in vor
lines by the flow having the velocity field

v5curlS dH
dVD . ~9!

It is very important in this process that all topological cha
acteristics of the vorticity field are conserved@19,32,33#. It
follows from Eqs.~3!, ~6!, and~7! that the HamiltonianHM
corresponding to the LagrangianLM is

HM$V%5
1

2E dk

~2p!3

uVku2

k2M ~k!
5

1

2E E GM~ ur12r2u!

3„V~r1!•V~r2…dr1dr2 , ~10!

with the Green’s functionGM(r ) being equal to the follow-
ing integral:

GM~r !5E dk

~2p!3

eikr

k2M ~k!
5

1

2p2E0

1` sinkr

kr

dk

M ~k!
.

~11!

The frozen-in vorticity field can be represented in top
logically simple cases as a continuous distribution of vor
lines @14–17#,
e

l

m
il-
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n
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V~r ,t !5E
N

d2n R d„r2R~n,j,t !…
]R

]j
dj, ~12!

where a two-dimensional~2D! Lagrangian coordinaten
5(n1 ,n2), which lies in some manifoldN, is the label of a
vortex line, while the longitudinal coordinatej determines a
point on the line.

The important characteristics of the system: the~virtual!
linear momentumP and the angular momentumM can be
expressed as follows:

P5E
N

d2n
1

2 R @R3Rj#dj, ~13!

M5E
N

d2n
1

3 R †R3@R3Rj#‡dj. ~14!

In the limit when the shapesR(n,j,t) of vortex lines do
not depend on the labeln, we have one singular vortex fila
ment with a finite circulationG5*N d2n. In this case the
flow is potential in the space around the filament:p5¹F,
with a multivalued scalar potentialF(r ,t). The potential
flow domain is passive from the dynamical viewpoint, b
cause there the flow depends entirely on the filament sh
The dynamics of the shapeR(j,t) of such an infinitely thin
vortex filament is determined in a self-consistent manner
the variational principle with the LagrangianL M

G $R% @14–
17#,
L M
G 5G R „@R83Rt#•D~R!…dj2

G2

2 R R GM„uR~j1!2R~j2!u…„R8~j1!•R8~j2!… dj1dj2 , ~15!
the

r-
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where the vector functionD(R) must have unit divergenc
@17#

divR D~R!51. ~16!

The generalization of the expression~15! to a case of severa
filaments with the circulationsG (n) and shapesR(n)(j,t), n
51, . . . ,N, is straightforward: one should write a single su
over n for the first term and a double sum for the Ham
tonian.

It is easy to see that the Hamiltonian~2! corresponds to
the functionM (k) in the form

M ~k!;ka. ~17!

The choice of the longitudinal parameterj is not unique,
but this does not affect the dynamics of the vortex str
which is an invariant geometric object. Sometimes it is co
g
-

venient to use parametrization of the vortex line shape by
Cartesian coordinate,

R~j,t !5„X~j,t !,Y~j,t !,j…. ~18!

Then the choiceD5(0,Y,0) gives immediately thatX(j,t)
andY(j,t) are canonically conjugated quantities.

Hereafter, we will consider vortex filaments with unit ci
culation for simplicity. So the symbolG, if appearing in
some expressions below, will mean the special mathema
Gamma function. Also, without loss of generality, all qua
tities may be considered as dimensionless.

Now, for some fixed value of the parametera, let us
consider the symmetrical dynamics of a pair of opposit
rotating vortex filaments, with the symmetry planey
5const. Due to this symmetry, it is sufficient to consid
only one of the filaments. It follows from the above discu
sion that the exact expression for the Hamiltonian of t
system is the following:
6-3
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Ha5
1

2E E ~11X18X281Y18Y28!dj1 dj2

@~j12j2!21~X12X2!21~Y12Y2!2# (12a)/2
1

1

2E E ~212X18X281Y18Y28!dj1 dj2

@~j12j2!21~X12X2!21~Y11Y21b!2# (12a)/2
,

~19!

whereb is the mean distance between the two filaments@b does not depend on time because of the conservation law fo
momentum~13!#, X15X(j1), X185X8(j1), and so on. The first term in Eq.~19! describes the nonlocal self-interaction of th
filament, while the second one corresponds to the interaction with the second filament. The Hamiltonian equations o
have the form

Ẋ~j!5
dHa

dY~j!
, Ẏ~j!52

dHa

dX~j!
. ~20!

III. CROW INSTABILITY FOR A PAIR OF VORTEX FILAMENTS

The system with the Hamiltonian~19! possesses the exact stationary solution

X~j,t !5C~a,b!t, Y~j,t !50, ~21!

which describes the uniform motion of straight filaments. Here the stationary velocityC(a,b) is proportional toba21. But this
solution appears to be unstable due to an analog of the Crow instability@18#. In this section we consider the linear evolutio
of small perturbations of the stationary solution, and derive the linear growth rate.

To perform the linear analysis of small deviations of the vortex shape from a straight line, we need the quadratic pa
Hamiltonian~19!,

H a
(2)5

1

2E E ~X18X281Y18Y28!

uj12j2u12a
dj1 dj21

1

2E E S a21

2 D @~X12X2!21~Y12Y2!2#

uj12j2u32a
dj1 dj2

1
1

2E E ~Y18Y282X18X28!

@~j12j2!21b2# (12a)/2
dj1 dj22

1

2E E S a21

2 D @~X12X2!21~Y11Y2!2#

@~j12j2!21b2# (32a)/2
dj1 dj2

2
1

2E E S a21

2 D S a23

2 D 2b2~Y11Y2!2

@~j12j2!21b2# (52a)/2
dj1dj2 . ~22!

For further consideration, it is useful to rewrite it in the one-dimensional~1D! Fourier representation,

H a
(2)5

1

2E dk

2p
@Aa~k!XkX2k1Ba~k!YkY2k#. ~23!

Expressions for the functionsAa(k) andBa(k) follow from Eq. ~22!. So,Aa(k) can be represented as follows:

Aa~k!52k2baE
0

1`

cos~kbz!S 1

z12a
2

1

~z211!(12a)/2D dz12~a21!ba22E
0

1`

@12cos~kbz!#S 1

z32a
2

1

~z211!(32a)/2D dz

52~12a!2ba22E
0

1`

@12cos~kbz!#S 1

z32a
2

1

~z211!(32a)/2
1S 32a

12a D 1

~z211!(52a)/2D dz. ~24!

Obviously,Aa(k) is positive everywhere. Analogous calculations for the functionBa(k) give

Ba~k!52k2baE
0

1`

cos~kbz!S 1

z12a
1

1

~z211!
12a

2
D dz12~a21!ba22E

0

1`

@12cos~kbz!#
dz

z32a

12~12a!ba22E
0

1`

@11cos~kbz!#S 1

~z211!(32a)/2
1

a23

~z211!(52a)/2D dz

52~12a!2ba22E
0

1`

@12cos~kbz!#
dz

z32a
22~12a!~32a!ba22E

0

1`

@11cos~kbz!#

3S 2

~z211!(52a)/2
2

1

~z211!(32a)/2D dz. ~25!
056306-4
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In Appendix A,Aa(k) andBa(k) are expressed through th
Euler Gamma functionG(x) and the modified Bessel func
tions of the second kindKn(x).

The dispersion relation between the frequencyva of a
small amplitude perturbation of the filament shape and
corresponding wave numberk is simply given by the formula

va
2~k!5Aa~k!Ba~k!, ~26!

since the linearized equations of motion forXk andYk are

Ẋk5Ba~k!Yk , Ẏk52Aa~k!Xk , ~27!

as follows from Eq.~20!. In Fig. 1 we have plottedva
2 versus

k for several values ofa.
It is easy to see that at small wave numbers the prod

Aa(k)Ba(k) is negative. Indeed, after some calculations
obtain in leading order forkb!1,

Aa~k!'k2baS 12a

a D I 32a , ~28!

Ba~k!'24~12a!2ba22I 32a , ~29!

where the constantI 32a is given by the integral

I 32a5E
0

1` dz

~z211!(32a)/2
5

ApGS 12
a

2 D
2GS 32a

2 D , ~30!

with G(•••) being the Gamma function. Therefore, an ins
bility takes place at smallk. The unstable domain in th
wave-number space corresponds to a rangeukub,q0(a),
whereBa(k) is negative, with the functionq0(a) behaving,
at small values ofa, like Aa

FIG. 1. The dependencesva
2(k)5Aa(k)Ba(k) with b51 for

a50.01, 0.025, 0.05, 0.1, 0.25, 0.5. Lines corresponding to
given values ofa intersect the horizontal axis in the indicated o
der.
05630
e

ct
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q0~a!'2Aa, a!1. ~31!

The plot ofq0(a) is shown in Fig. 2. The instability incre
mentga(k)5A2Aa(k)Ba(k) is proportional to the absolute
value ofk at very small values ofkb,

g~k!'~12a!I 32a2ukuba21A~12a!/a. ~32!

However, for eacha there exists a maximum valuegmax(a)
of the increment, which is attained atkb;Aa. Therefore the
approximate expressions~29! and ~32! are valid only if
ukub!Aa.

For large wave numbers,ukub@1, the functionsAa(k)
andBa(k) are both positive. The asymptotic approximatio
in that region are

Aa~k!'Ba~k!'2~12a!2k22aE
0

1` ~12cosh!

h32a
dh

5k22a
2~12a!cos~pa/2!G~a!

22a
. ~33!

Note that this expression does not contain the parameteb.
For a single vortex filament it is actually the exact express
for Aa(k) andBa(k), which is valid in the whole range ofk.

A general nonlinear analysis of the nonlocal system~19!
is difficult. Therefore we need some simplified model whi
would approximate the nonlinear dynamics, at least in
most interesting long scale unstable regime. In the next s
tion we suggest such an approximate model and find a c
of solutions describing the formation of a finite time sing
larity.

IV. SINGULARITY IN LONG-SCALE NONLINEAR
DYNAMICS

We note that the same long-scale limit as in Eqs.~28! and
~29! can be obtained from the local nonlinear Hamiltonia

e
FIG. 2. The boundary of instabilityq0(a).
6-5
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Hl$R~j!%5~12a!I 32a R ~2Y!a

a
AX821Z82dj, ~34!

where the coordinateY(j) is measured from the symmetr
plane. This Hamiltonian approximates the exact nonlo
Hamiltonian of a symmetrical pair of vortex filaments in th
case when the ratio of a typical value ofY to a typical lon-
gitudinal scaleL is much smaller thanq0(a)

Y/L!Aa. ~35!

In particular, this means that the slope of the curve w
respect to the symmetry plane should be small, and alsY
should be small in comparison with the radius of the li
curvature. WhenY5const, X85const, Z85const, expres-
sion ~34! gives the same result for uniform stationary moti
as the exact Hamiltonian.

With the Cartesian parametrization~18!, the correspond-
ing approximate local nonlinear equations of motion ha
the form ~after appropriate time rescaling!

Ẋ5
1

~22a!

A11X82

Y12a
, ~36!

Ẏ5
1

~22a!a S YaX8

A11X82D 8
~37!

and they allow us to obtain a simple explanation of the
stability. On a qualitative level of understanding, the reas
for the instability is that if initially some pieces of the curv
were closer to the symmetry plane and convex in the dir
tion of motion, then at subsequent moments in time the c
vature will be increasing because of smaller values ofY and
corresponding larger velocity, whileY will be decreasing due
to the curvature. Thus, the feedback is positive and the
tem is unstable. In the final stage of the instability develo
ment, a locally self-similar regime in the dynamics is po
sible, because the above equations admit the self-sim
substitution

X~j,t !5X* 2~ t* 2t !bx@~j2j* !~ t* 2t !2b#, ~38!

Y~j,t !5~ t* 2t !by@~j2j* !~ t* 2t !2b#, ~39!

with arbitrary constantsX* , j* , t* , and with the exponent

b5
1

22a
. ~40!

After substituting Eqs.~38! and~39! into Eqs.~36! and~37!,
we obtain a pair of ordinary differential equations for t
functionsx(z) andy(z),

x2z
dx

dz
5

A11~dx/dz!2

y12a
, ~41!

y2z
dy

dz
5

1

a

d

dzS ya~dx/dz!

A11~dx/dz!2D , ~42!
05630
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wherez5(j2j* )(t* 2t)2b.
However, with this choice of parametrization of the curv

the obviously existing symmetry of the system~34! with
respect to rotation in thex-z plane is hidden. For taking
advantage of this symmetry, cylindrical coordinates are m
appropriate, with the angle coordinatew serving as the lon-
gitudinal parameter,

~X,Y,Z!5@R~w,t !cosw,Y~w,t !,2R~w,t !sinw#. ~43!

Instead of the equations of motion~36! and ~37!, we obtain
the equivalent system@where a same time rescaling as
Eqs.~36! and ~37! is performed#

2~22a!RṘ5
AR21R82

Y12a
, ~44!

2~22a!RẎ5
1

a S YaR8

AR21R82D 8
2

1

a

RYa

AR21R82
. ~45!

Here (•••)85]w(•••). This system follows from the La-
grangian written in cylindrical coordinates

Lw;E S ~22a!
R2

2
Ẏ2

Ya

a
AR21R82Ddw. ~46!

The self-similar substitution

R~w,t !5~ t* 2t !br ~w!, Y~w,t !5~ t* 2t !by~w! ~47!

does not change the meaning of the angle coordinatew. It
leads us to the following pair of equations for the functio
r (w) andy(w):

r 25
Ar 21r 82

y12a
, ~48!

yr5
1

a S yar 8

Ar 21r 82D 8
2

1

a

rya

Ar 21r 82
. ~49!

We observe that there is no explicit dependence onw in
these equations. This property helps us to integrate the
tem. The general solution can be represented in the follow
parametric form~see Appendix B for a detailed derivation!:

w~p!5w01arctan~p!

2A a~12a!

~22a!~11a!
arctanS pAa~22a!

~12a2!
D ,

~50!

y~p!5C21/(22a)S ~12a2!

a~22a!
1p2D 1/2(22a)

, ~51!

r ~p!5C(12a)/(22a)S ~12a2!

a~22a!
1p2D (a21)/2(22a)

A11p2,

~52!
6-6
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where the parameterp runs between the limits2`,p,
1`, C andw0 are arbitrary integration constants . The co
stantC determines the asymptotic slope of the curve at la
distances from the origin:y'r /C when r→`, while the
constantw0 reflects the mentioned symmetry of the syste
with respect to rotations inx-z plane. The condition~35! for
applicability of the local approximation~34! is satisfied if
CAa@1. A typical self-similar solutionx(z) is shown in
Fig. 3.

It is interesting to note that the total angleDw between
two asymptotic directions in thex-z plane does not depen
on the parameterC in the long-scale local approximatio
used above,

Dw5pS 12A a~12a!

~22a!~11a!
D . ~53!

At small values ofa, this angle approachesp. Another re-
mark aboutDw is that the above expression assumes ide
cal values ata and at 12a, so the valueã51/2 results in
the extremumDwmin52p/3. For this case, the curve lies o
the coney5r /C.

V. DISCUSSION

We observed that in the systems~34! with 0,a,1, finite
time singularity formation is possible in the self-similar r
gime. Inasmuch as the condition~35! for the applicability of
the approximate Hamiltonian~34! is satisfied in a range o
the parameterC related to the self-similar solutions~50!–
~52!, we conclude that in the systems~2! the self-similar
collapse of two symmetrical singular vortex filaments c
also take place. The principal question is whether this is a
possible for filaments having finite width. If yes, then su
solutions are analogous to the assumed self-similar solut
of the Euler equation. Though the exponentb ~40! differs
from 1/2, the difference is small ifa is small. However, an
important difference exists between infinitely thin filamen
and filaments with finite width: inside the latter, longitudin
flows take place, caused by a twist of the vortex lines c
stituting the filament. Those flows keep the width homog

FIG. 3. Self-similar solutionx(z) for C550, a50.1.
05630
-
e

i-

o

ns

-
-

neous along the filament if a local stretching is not su
ciently fast. This mechanism acts against singular
formation and, probably, in some cases it can prevent a
gularity at all. ~It is worth mentioning here that for finite
width vortex structures in the Navier-Stokes equation fram
the usual ‘‘outcome’’ result of the Crow instability is vorte
line reconnection@34#.! Thus, a more or less consiste
analysis of the general situation should take into accou
besides the dynamics of a mean shape of the filamen
least the dynamics of the width and the conjugated dynam
of the twist. Clearly, we do not need to consideraÞ0 sys-
tems, when we deal with nonsingular vortex filaments.
should be emphasized that an attempt to take account o
finite width of the filament by simply using regularize
Green’s functions such asGe(r );1/Ar 21e2 with a constant
e, giving correct results for the long scale limit of the linea
ized problem, fails to describe the dynamics in the high
nonlinear regime.

Also, we would like to note that a local approximatio
analogous to Eq.~34! is possible for arbitrary Green’s func
tion GM(r ). The corresponding long scale Hamiltonian h
the form

HMl$R~j!%5 R FM~Y!AX821Z82dj,

where the~positive! function FM(Y) is related to the func-
tion GM(r ) in the following way:

FM~Y!5E
0

1`

$GM~j!2GM@Aj21~2Y!2#%dj.

The stationary motion with a constant coordinateY05b/2 is
unstable if the second derivative of the functionFM is nega-
tive at that value:FM9 (b/2),0. We believe that such system
can exhibit locally self-similar collapse, if the asymptotics
the functionFM(Y) is powerlike at smallY: FM;Ya, with
0,a,1.

The final remark concerns the possibility of including e
fects caused by the fact that the unstable range is finite in
wave-number space into the approximate long scale the
This is especially important for the case of small values ofa,
because in that limit the condition~35! for the applicability
of the Hamiltonian~34! becomes too restrictive. The ide
how to improve the approximation is the following. In ge
eral, the exact expression for the Hamiltonian of a pair
singular filaments, after integration by parts, can be rep
sented as the half of the integral over a surfaceS drawn
between the filaments~one-half since we consider only on
from two symmetric strings!:

Ha5
1

2E ~v•p!

2
dr5

G

2ES

~v•dS!

2
,

because the canonical momentum fieldp created by fila-
ments is determined by a multivalued scalar potentialF(r ):
p5¹F, which has the additive incrementG5r(p•dl) after
passing around a filament. Also the equality divv50 is im-
portant for derivation of the last expression. In the case
6-7
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small a, we should just more carefully take account of t
contribution to the surface integral from the vicinity of fila
ments. As the result of such consideration, we find that fo
better approximation it is sufficient to replace in Eq.~34! the
projection of the arc-length element by the entire arc-len
element and, correspondingly, use the Hamiltonian

H l
a!1$R~j!%; R Ya

a
AX821Y821Z82dj. ~54!

We stress once more that this expression is valid only in
casea!1, Y/L!1.
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APPENDIX A

In order to have some closed expressions for the funct
Aa(k) andBa(k) instead of the integral representations~24!
and ~25!, let us use the following mathematical relatio
@35#:

I n2a5E
0

1` dz

~z211!
n2a

2

5
Ap

2

GS n212a

2 D
GS n2a

2 D , ~A1!

I (1)5E
0

1`

cos~kbz!
dz

z12a
5~bk!2acosS pa

2 DG~a!,

~A2!

I (3)5E
0

1`

@12cos~kbz!#
dz

z32a
5

~kb!2I (1)

~12a!~22a!
,

~A3!

E
0

1`cos~qz!dz

~z211!r
5

Ap

G~r! S q

2D r2(1/2)

Kr2(1/2)~q!, r.0,

~A4!

whereG(x) is the Gamma function andKn(x) is the modi-
fied Bessel function of the second kind. The integral~A4!
results in the equalities

J(1)5E
0

1` cos~kbz!dz

~z211!(12a)/2
5

Ap

GS 12a

2 D S kb

2 D 2a/2

K2a/2~kb!,

~A5!
05630
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J(3)5E
0

1` cos~kbz!dz

~z211!(32a)/2

5
Ap

GS 32a

2 D S kb

2 D 12(a/2)

K12(a/2)~kb!, ~A6!

J(5)5E
0

1` cos~kbz!dz

~z211!(52a)/2

5
Ap

GS 52a

2 D S kb

2 D 22(a/2)

K22(a/2)~kb!. ~A7!

Thus, we have from Eqs.~24! and ~25!

Aa~k!52~12a!2ba22I (3)22k2baJ(1)

12~12a!ba22~ I 32a2J(3)!, ~A8!

Ba~k!52~12a!2ba22I (3)22~12a!~32a!ba22

3@2~J(5)1I 52a!2J(3)2I 32a#. ~A9!

APPENDIX B

In this appendix we explain how the solution@~50!–~52!#
of the system@~48! and ~49!# can be obtained. Let us intro
duce the designations

Q5~dr/dw!2, s5r 2, ~B1!

then consider temporarys as independent variable, and r
write Eq. ~49! as follows:

y5
2

a FQ
d

dsS ya

As1Q
D 1

ya~dQ/ds21!

2As1Q
G , ~B2!

or equivalently

y5
2

a Fa
dy

ds
ya21As1Q2

d

dsS yas

As1Q
D G . ~B3!

Substituting into this equation the relation

Q5s~sy2(12a)21!, ~B4!

which follows from Eq.~48!, we have the following equation
for y(s):

y5
2

a

dy

ds
@as1~122a!y2(a21)#. ~B5!

This first-order differential equation is linear for the inver
dependences(y), and its general solution is

s~y!5C2y22
~122a!

a~22a!
y2(a21), ~B6!
6-8
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whereC is an arbitrary constant of integration. Thus, we have the relation betweeny ands5r 2. To obtain another relation
betweeny andw, let us use the equation

dw5
ds

2AsQ
, ~B7!

which gives us the integral

w2w05E s8~y!dy

2s~y!As~y!y2(12a)21
5E

S C2y2(22a)1
~122a!~12a!

a~22a!
D dy

y

S C2y2(22a)2
~122a!

a~22a!
DAC2y2(22a)2

~12a2!

a~22a!

5arctanAS C2y2(22a)2
~12a2!

a~22a!
D 2A a~12a!

~22a!~11a!
arctanAS a~22a!

~12a2!
C2y2(22a)21D . ~B8!

After introducing the new parameter

p5AS C2y2(22a)2
~12a2!

a~22a!
D , ~B9!

we arrive at a solution of the system@~48! and ~49!# in the form ~50!–~52!.
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